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Competition Summary 

● Goal: Forecast future web traffic for ~145,000 Wikipedia 
articles

● When: 8 months ago
● Sponsored by Google and Voleon
● 375 teams
● Prizes {1: $12,000, 2: $8,000, 3: $5,000}
+ Present at NIPS Time Series Workshop in California

URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting
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Presentation Overview

● The problem
● The data
● The evaluation metric
● The leaderboard
● Overview of winner’s solution
● What I learned
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The Problem

● Forecasting future web traffic for approximately 145,000 
Wikipedia articles.
○ Why?

● Forecasting future values of multiple time series is
“one of the most challenging problems in the field”
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URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting



Time Series Analysis And Forecasting
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URL: https://en.wikipedia.org/wiki/Time_series

Dynamic 
System



Competition Timeline
● Training phase:

○ Forecast traffic in January and February 2017 based on historical data 
from July 2015 to December 2016

● Future phase:
○ Forecast future traffic between September 13th and November 13th, 

2017 based on data up to September 1st, 2017
● September 1, 2017 - Final dataset released
● September 12, 2017 - Final submission deadline
● November 13, 2017 - Competition winners revealed
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URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting



The Data
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URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting/data



The Data
● 145,000 time series:

○ Daily page views, 2015-07-01 to 2016-12-31

"Page","2015-07-01","2015-07-02","2015-07-03",… "2016-12-31"
"2NE1_zh.wikipedia.org_all-access_spider",18,11,5,… 20
"2PM_zh.wikipedia.org_all-access_spider",11,14,15,… 20

…

"Bogotá_es.wikipedia.org_all-access_all-agents",2685,2849,3045,… 1967
…

"陳法拉_zh.wikipedia.org_mobile-web_all-agents",293,474,252,… 192
…

train_1.csv
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traffic data
page name



The Data
● List of keys

"Page","Id"
"!vote_en.wikipedia.org_all-access_all-agents_2017-01-01",bf4edcf969af
"!vote_en.wikipedia.org_all-access_all-agents_2017-01-02",929ed2bf52b9

…

"Bogotá_es.wikipedia.org_all-access_all-agents_2017-01-23",25e7cc352d8e
…

"陳法拉_zh.wikipedia.org_mobile-web_all-agents_2017-02-03",50fa6fe170be
…

key_1.csv
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shortened id



The Data
● Sample submission

Id,Visits
bf4edcf969af,0
929ed2bf52b9,0
ff29d0f51d5c,0
e98873359be6,0
fa012434263a,0

…

sample_submission_1.csv
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Your predictions go here!



The Data
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The Data
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The Data
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Evaluation
● Metric:

○ SMAPE - Symmetric mean absolute percentage error
○ Based on percentage (or relative) errors
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where At is actual value, Ft is forecast value

URL: https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error



Evaluation
● SMAPE
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Final Results
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Winner
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Intuition
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There are two main information sources for prediction:

● Local features.
○ If we see a trend, we expect that it will continue (auto-regressive model)
○ If we see a traffic spike, it will gradually decay (moving-average model)
○ If we see more traffic on holidays, we expect to have more traffic on 

holidays in the future (seasonal model).
● Global features

○ If we look to autocorrelation plot, we'll notice strong year-to-year 
autocorrelation and some quarter-to-quarter autocorrelation.

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Autocorrelation Plot
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Model

● Encoder is cuDNN GRU. 
● Decoder is TF GRUBlockCell, wrapped in tf.while_loop() construct. 
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Sequence-to-sequence model



Recurrent Neural Networks (RNNs)
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Source: https://www.coursera.org/specializations/deep-learning



Gated Recurrent Unit (GRU)
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Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Model Design Choice
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I decided to use a seq2seq model (RNN) for prediction, because:

● RNN can be thought of as a natural extension of well-studied ARIMA models, 
but much more flexible and expressive

● RNN is non-parametric, that greatly simplifies learning
● Accepts any exogenous feature (numerical or categorical, time-dependent or 

series-dependent) can be easily injected into the model
● seq2seq seems natural for this task: we predict next values, conditioning on 

joint probability of previous values, including our past predictions
● Deep Learning is all the hype nowadays.

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Feature Engineering
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Minimalistic because RNN is able to discover and learn features on its own:

1. pageviews - raw values transformed by log1p() to get more-or-less normal 
intra-series values distribution, instead of skewed one.

2. agent, country, site - extracted from page urls and one-hot encoded
3. day of week - to capture weekly seasonality
4. year-to-year, quarter-to-quarter autocorrelation - to capture yearly and 

quarterly seasonality strength
5. page popularity (median of pageviews) - helps to capture traffic scale. High 

traffic and low traffic pages have different traffic change patterns.
6. lagged pageviews - I'll describe this feature later
Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Model

● On sequences longer than 100-300 items, even LSTM/GRU can gradually 
forget the oldest items

● First method was to use some kind of attention
● E.g. Fixed-weight sliding-window attention:
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Working with long timeseries

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Model

Unsatisfied by complexity of 
attention mechanics, I removed 
attention completely and just took 
important (year, half-year, quarter 
ago) data points from the past and 
used them as additional features for 
encoder and decoder. 
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Working with long timeseries

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Training
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● SMAPE can't be used directly, because 
of unstable behavior near zero values 
(loss is a step function if truth value is 
zero)

● Used a smoothed differentiable 
SMAPE variant, which is well-behaved 
at all real numbers:

epsilon = 0.1
summ = tf.maximum(tf.abs(true) + tf.abs(predicted) + epsilon, 0.5 + epsilon)
smape = tf.abs(predicted - true) / summ * 2.0



Training
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

There are two ways to split time series into training and validation datasets:



Training
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● Model trains on random fixed-length samples from original time series. 
● Training code randomly chooses starting point for each time series on each 

step, generating endless stream of almost non-repeating data.
● This sampling is effectively a data augmentation mechanism
● Used COCOB optimizer for training, in combination with gradient clipping
● COCOB tries to predict optimal learning rate for every training step, so you 

don't have to tune learning rate at all*
● Converges considerably faster than traditional momentum-based optimizers, 

especially on first epochs, allowing unsuccessful experiments to be stopped.

* See paper Training Deep Networks without Learning Rates Through Coin Betting.
Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md



Training
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● During training, performance 
fluctuated wildly from step to step.



Issues
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● Model has inevitably high variance - due to very noisy input data
(variance = difference between error in training and error in future prediction)

● Same model trained on different seeds can have different performance
● Sometimes model even diverges on "unfortunate" seeds.



Reducing Model Variance
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

1. Chose a region when model is trained well enough, but has not started to 
overfit: 10,500 and 11,500 training steps then saved checkpoints every 100 
steps in this region

2. Trained 3 models on different seeds and saved checkpoints from each model. 
Took average predictions from all 30 (10x3) models

3. Used SGD averaging (ASGD) - maintain moving averages of network weights 
during training and use these instead of original ones, during inference

● Combination of the three methods worked well
● Got roughly the same SMAPE error on leaderboard (for future data) as for 

validation on historical data.



Hyper-parameter Tuning
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Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● There are many model parameters (number of layers, layer depths, activation 
functions, dropout coefficients, etc) that can be tuned to achieve optimal 
performance.

● Used the SMAC3 package to automate hyperparameter search.
● Contrary to my expectations, hyper-parameter search did not find well-defined 

global minima
● All best models had roughly the same performance, but different parameters. 
● Probably RNN model is too expressive for this task, and best model score 

depends more on the signal-to-noise ratio than on the model architecture.



Predictions
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URL: https://github.com/Arturus/kaggle-web-traffic



What I Learned
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● Explore the data
● Look at performance of traditional methods
● Use intuition to find features that could be useful
● Choose the right cost function - matched to evaluation metric + optimizer
● The rest is luck or magic!
● ...

Also: 
Trying to run one person’s code on another person’s machine is a nightmare!



Thank You
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2nd Place
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“Got a PhD in machine learning in a 
previous millennium, ML was very 

different from now, and therefore this 
PhD is useless…”

“this is the first time I'm using 
deep learning”



2nd Place Submission
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Based on 5 ideas: 

1. Use the yearly seasonality of the data - it is huge
2. Don’t use RMSE. Approximate SMAPE with log1p transformed data and use 

custom objective functions for each optimizer
3. Get rid of outliers
4. Ensemble everything in xgboost by training it on the residuals of the Keras 

predictions and the same features as my XGBoost model plus out of fold 
predictions from Huber regressor and Keras model

5. Use medians as features instead of raw values.
Source: https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/39395

https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/39395


2nd Place Submission
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Source: 
https://www.ibm.com/developerworks/community/blogs/jfp/entry/2nd_Prize_WInning_Solution_
to_Web_Traffic_Forecasting_competition_on_Kaggle?lang=en
https://github.com/jfpuget/Kaggle/tree/master/WebTrafficPrediction

● Feedforward network: [200, 200, 100, 200] units in each layer
● Input is concatenated again with the output of the first layer (I don't know why 

but this boosted accuracy)
● Activation is relu except for last one which is linear
● Used dropout of 0.5 for almost all layers (0.5 was selected by CV)
● Used a batch normalization for the middle layer
● Model is compiled with adam optimizer and the loss function defined above.
● I tried CNNs and RNNs (LSTM, and Seq2Seq) but did not get results as good 

as the simple feed-forward network.

https://www.ibm.com/developerworks/community/blogs/jfp/entry/2nd_Prize_WInning_Solution_to_Web_Traffic_Forecasting_competition_on_Kaggle?lang=en
https://github.com/jfpuget/Kaggle/tree/master/WebTrafficPrediction

