
Web Traffic
Time Series Forecasting

Kaggle Competition Review

Bill Tubbs
July 26, 2018

Competition Summary

● Goal: Forecast future web traffic for ~145,000 Wikipedia
articles

● When: 8 months ago
● Sponsored by Google and Voleon
● 375 teams
● Prizes {1: $12,000, 2: $8,000, 3: $5,000}
+ Present at NIPS Time Series Workshop in California

URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting
2

Presentation Overview

● The problem
● The data
● The evaluation metric
● The leaderboard
● Overview of winner’s solution
● What I learned

3

The Problem

● Forecasting future web traffic for approximately 145,000
Wikipedia articles.
○ Why?

● Forecasting future values of multiple time series is
“one of the most challenging problems in the field”

4

URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting

Time Series Analysis And Forecasting

5

URL: https://en.wikipedia.org/wiki/Time_series

Dynamic
System

Competition Timeline
● Training phase:

○ Forecast traffic in January and February 2017 based on historical data
from July 2015 to December 2016

● Future phase:
○ Forecast future traffic between September 13th and November 13th,

2017 based on data up to September 1st, 2017
● September 1, 2017 - Final dataset released
● September 12, 2017 - Final submission deadline
● November 13, 2017 - Competition winners revealed

6

URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting

The Data

7

URL: https://www.kaggle.com/c/web-traffic-time-series-forecasting/data

The Data
● 145,000 time series:

○ Daily page views, 2015-07-01 to 2016-12-31

"Page","2015-07-01","2015-07-02","2015-07-03",… "2016-12-31"
"2NE1_zh.wikipedia.org_all-access_spider",18,11,5,… 20
"2PM_zh.wikipedia.org_all-access_spider",11,14,15,… 20

…

"Bogotá_es.wikipedia.org_all-access_all-agents",2685,2849,3045,… 1967
…

"陳法拉_zh.wikipedia.org_mobile-web_all-agents",293,474,252,… 192
…

train_1.csv

8

traffic data
page name

The Data
● List of keys

"Page","Id"
"!vote_en.wikipedia.org_all-access_all-agents_2017-01-01",bf4edcf969af
"!vote_en.wikipedia.org_all-access_all-agents_2017-01-02",929ed2bf52b9

…

"Bogotá_es.wikipedia.org_all-access_all-agents_2017-01-23",25e7cc352d8e
…

"陳法拉_zh.wikipedia.org_mobile-web_all-agents_2017-02-03",50fa6fe170be
…

key_1.csv

9

shortened id

The Data
● Sample submission

Id,Visits
bf4edcf969af,0
929ed2bf52b9,0
ff29d0f51d5c,0
e98873359be6,0
fa012434263a,0

…

sample_submission_1.csv

10

Your predictions go here!

The Data

11

The Data

12

The Data

13

Evaluation
● Metric:

○ SMAPE - Symmetric mean absolute percentage error
○ Based on percentage (or relative) errors

14

where At is actual value, Ft is forecast value

URL: https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error

Evaluation
● SMAPE

15

Final Results

16

Winner

17

Intuition

18

There are two main information sources for prediction:

● Local features.
○ If we see a trend, we expect that it will continue (auto-regressive model)
○ If we see a traffic spike, it will gradually decay (moving-average model)
○ If we see more traffic on holidays, we expect to have more traffic on

holidays in the future (seasonal model).
● Global features

○ If we look to autocorrelation plot, we'll notice strong year-to-year
autocorrelation and some quarter-to-quarter autocorrelation.

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Autocorrelation Plot

19

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Model

● Encoder is cuDNN GRU.
● Decoder is TF GRUBlockCell, wrapped in tf.while_loop() construct.

20

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Sequence-to-sequence model

Recurrent Neural Networks (RNNs)

21

Source: https://www.coursera.org/specializations/deep-learning

Gated Recurrent Unit (GRU)

22

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Model Design Choice

23

I decided to use a seq2seq model (RNN) for prediction, because:

● RNN can be thought of as a natural extension of well-studied ARIMA models,
but much more flexible and expressive

● RNN is non-parametric, that greatly simplifies learning
● Accepts any exogenous feature (numerical or categorical, time-dependent or

series-dependent) can be easily injected into the model
● seq2seq seems natural for this task: we predict next values, conditioning on

joint probability of previous values, including our past predictions
● Deep Learning is all the hype nowadays.

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Feature Engineering

24

Minimalistic because RNN is able to discover and learn features on its own:

1. pageviews - raw values transformed by log1p() to get more-or-less normal
intra-series values distribution, instead of skewed one.

2. agent, country, site - extracted from page urls and one-hot encoded
3. day of week - to capture weekly seasonality
4. year-to-year, quarter-to-quarter autocorrelation - to capture yearly and

quarterly seasonality strength
5. page popularity (median of pageviews) - helps to capture traffic scale. High

traffic and low traffic pages have different traffic change patterns.
6. lagged pageviews - I'll describe this feature later
Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Model

● On sequences longer than 100-300 items, even LSTM/GRU can gradually
forget the oldest items

● First method was to use some kind of attention
● E.g. Fixed-weight sliding-window attention:

25

Working with long timeseries

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Model

Unsatisfied by complexity of
attention mechanics, I removed
attention completely and just took
important (year, half-year, quarter
ago) data points from the past and
used them as additional features for
encoder and decoder.

26

Working with long timeseries

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Training

27

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● SMAPE can't be used directly, because
of unstable behavior near zero values
(loss is a step function if truth value is
zero)

● Used a smoothed differentiable
SMAPE variant, which is well-behaved
at all real numbers:

epsilon = 0.1
summ = tf.maximum(tf.abs(true) + tf.abs(predicted) + epsilon, 0.5 + epsilon)
smape = tf.abs(predicted - true) / summ * 2.0

Training

28

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

There are two ways to split time series into training and validation datasets:

Training

29

● Model trains on random fixed-length samples from original time series.
● Training code randomly chooses starting point for each time series on each

step, generating endless stream of almost non-repeating data.
● This sampling is effectively a data augmentation mechanism
● Used COCOB optimizer for training, in combination with gradient clipping
● COCOB tries to predict optimal learning rate for every training step, so you

don't have to tune learning rate at all*
● Converges considerably faster than traditional momentum-based optimizers,

especially on first epochs, allowing unsuccessful experiments to be stopped.

* See paper Training Deep Networks without Learning Rates Through Coin Betting.
Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

Training

30

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● During training, performance
fluctuated wildly from step to step.

Issues

31

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● Model has inevitably high variance - due to very noisy input data
(variance = difference between error in training and error in future prediction)

● Same model trained on different seeds can have different performance
● Sometimes model even diverges on "unfortunate" seeds.

Reducing Model Variance

32

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

1. Chose a region when model is trained well enough, but has not started to
overfit: 10,500 and 11,500 training steps then saved checkpoints every 100
steps in this region

2. Trained 3 models on different seeds and saved checkpoints from each model.
Took average predictions from all 30 (10x3) models

3. Used SGD averaging (ASGD) - maintain moving averages of network weights
during training and use these instead of original ones, during inference

● Combination of the three methods worked well
● Got roughly the same SMAPE error on leaderboard (for future data) as for

validation on historical data.

Hyper-parameter Tuning

33

Source: https://github.com/Arturus/kaggle-web-traffic/blob/master/how_it_works.md

● There are many model parameters (number of layers, layer depths, activation
functions, dropout coefficients, etc) that can be tuned to achieve optimal
performance.

● Used the SMAC3 package to automate hyperparameter search.
● Contrary to my expectations, hyper-parameter search did not find well-defined

global minima
● All best models had roughly the same performance, but different parameters.
● Probably RNN model is too expressive for this task, and best model score

depends more on the signal-to-noise ratio than on the model architecture.

Predictions

34

URL: https://github.com/Arturus/kaggle-web-traffic

What I Learned

35

● Explore the data
● Look at performance of traditional methods
● Use intuition to find features that could be useful
● Choose the right cost function - matched to evaluation metric + optimizer
● The rest is luck or magic!
● ...

Also:
Trying to run one person’s code on another person’s machine is a nightmare!

Thank You

36

2nd Place

37

“Got a PhD in machine learning in a
previous millennium, ML was very

different from now, and therefore this
PhD is useless…”

“this is the first time I'm using
deep learning”

2nd Place Submission

38

Based on 5 ideas:

1. Use the yearly seasonality of the data - it is huge
2. Don’t use RMSE. Approximate SMAPE with log1p transformed data and use

custom objective functions for each optimizer
3. Get rid of outliers
4. Ensemble everything in xgboost by training it on the residuals of the Keras

predictions and the same features as my XGBoost model plus out of fold
predictions from Huber regressor and Keras model

5. Use medians as features instead of raw values.
Source: https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/39395

https://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/39395

2nd Place Submission

39

Source:
https://www.ibm.com/developerworks/community/blogs/jfp/entry/2nd_Prize_WInning_Solution_
to_Web_Traffic_Forecasting_competition_on_Kaggle?lang=en
https://github.com/jfpuget/Kaggle/tree/master/WebTrafficPrediction

● Feedforward network: [200, 200, 100, 200] units in each layer
● Input is concatenated again with the output of the first layer (I don't know why

but this boosted accuracy)
● Activation is relu except for last one which is linear
● Used dropout of 0.5 for almost all layers (0.5 was selected by CV)
● Used a batch normalization for the middle layer
● Model is compiled with adam optimizer and the loss function defined above.
● I tried CNNs and RNNs (LSTM, and Seq2Seq) but did not get results as good

as the simple feed-forward network.

https://www.ibm.com/developerworks/community/blogs/jfp/entry/2nd_Prize_WInning_Solution_to_Web_Traffic_Forecasting_competition_on_Kaggle?lang=en
https://github.com/jfpuget/Kaggle/tree/master/WebTrafficPrediction

