Data-Driven Models For Industrial Process Control

Bill Tubbs | Sanja Miskovic | University of British Columbia - Norman B. Keevil Institute of Mining Engineering

Question

Can we find good models of the dynamic behaviour of an industrial process from limited measurements?

Motivation

- We rarely have good theoretical models of industrial processes
- Identifying system dynamics is difficult due to lack of measurement data, noise, unobservable disturbances, and non-linearities.
- If we can find good models we can optimize the process in real time (model predictive control).

Experiment

The Temperature Control Lab is an Arduino module for testing feedback control with two heaters and two temperature sensors.

Temperature Control Lab (Brigham Young University, https://apmonitor.com/heat.htm)

First-Principles Models

Traditionally, process models are developed from engineering first-principles and fundamental laws of physics.

Energy Balance Model

Temperature Prediction

Simplest case: $\frac{dT_1}{dt} = f_1(H_1, H_2, T_1, T_2)$ $\frac{dT_2}{dt} = f_2(H_1, H_2, T_1, T_2)$

Data Collection

We generated four hours of temperature measurements from the heater system using design-of-experiments methodology

Measurement Data

Function Approximators

Key	Model Type
Base	Baseline model (dT/dt =
LR	Linear regression
Ridge	Ridge regression
Lasso	Lasso regression
FPM	First-principles model
NLR	Non-linear regression (s
SVR	Support vector regression
MLP	Neural network

0)

- sparse)
- on

- system dynamics from observed data.

Data-Driven Model-Based Control

THE UNIVERSITY OF BRITISH COLUMBIA

Results

We tested the models by calculating the mean-squared error (MSE) of the predictions compared to the training and test data

Discussion

Model-free optimization techniques can potentially 'learn' complex

However, model-based methods are more robust, easier to interpret, and do not require large amounts of training data.

With model-based methods and a data-driven approach we can improve on the performance of an experienced human operator.

Temperature Predictions with First-Principles Model