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Question Temperature Prediction Results
Simplest case: System Outputs - Temperatures We tested the models by calculating the mean-squared error (MSE)
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Temperature Predictions with First-Principles Model Model Type
Experiment Data Collection Error Analysis
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(Brigham Young University, https://apmonitor.com/heat.htm) ’ 0 50 100 150 200 SyStem dynamlcs from observed data.
Time (mins) However, model-based methods are more robust, easier to
_ _ _ Measurement Data interpret, and do not require large amounts of training data.
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Traditionally, process models are developed from engineering FUﬂCtIOn ApprOXImatOrS P P P P
first-principles and fundamental laws of physics.
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