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Background

SAG Mills Are Used In Large Mining Operations To Grind Crushed Ore Prior To
Processing To Recover Valuable Metals
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Background

* Grinding occurs inside a rotating
drum-shaped mill containing
rocks, water, and steel balls

* Size of rock particles is reduced
by two processes:

* Impact breakage due to
cataracting motion

 Attrition due to cascading
motion

Video simulation: https://vimeo.com/266660541 Source: https://www.sciencedirect.com/science/article/abs/pii/S0892687513002926

SAG Mills Are Used In Large Mining Operations To Grind Crushed Ore Prior To

Processing To Recover Valuable Metals
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Background
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Multi-Input, Multi-Output (MIMO) System With Unobservable Internal State
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Process Characteristics

Normal Volumetric Overload
¢ CO N t o I C h d I I en g es (efficient communition) (inefficient communition and
may damage equipment)

* Probably impossible to build precise
model from first principles

-

Strong, unobservable disturbances
Partially-observable state
Non-linear dynamics

Circulating load

Slow response

Noise, measurement error
Unstable states

Stochastic (rock breakage)
Non-stationary (liner and ball wear)

(inefficient communition) (inefficient communition)

Source: McKlure and Gopaluni (2015)

Complex Process With Unstable, Non-Linear Dynamics

2019-08-28 B. Tubbs & Associates Consulting



Process Characteristics
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Mill Filling And Speed Have A Significant Effect On Grind, Throughput And Power

Consumption

2019-08-28

B. Tubbs & Associates Consulting Inc.



System Dynamics

Feed
Material
Properties

Breakage
Rates

Feed Size
Distribution

Discharge
Rate

Feed Rate

Interactive Effects Between Mill Contents And Breakage Rates
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System Dynamics

Rotational
Speed

> Power Draw
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Interactive Effects Between Mill Contents And Breakage Rates
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Process Simulation Models

Population Discrete

:peifie . Power Models Balance Element

Models (PBM) Models (DEM)

Energy Models

Bond Work Index P = f(dimensions, I .
(kWh/t) OT€,
speed, df 1
ball size, i _sf4 Z biiSif,
: dt L
rock size) j=i-1

Process Simulation Models Have Evolved From Simple Specific Energy Models To

Very Sophisticated DEM Models
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Process Simulation Models

Population Balance Model (PBM)

p=Df P is the product vector, f the feed vector, B the
where breakage matrix, I the unit matrix, S the selection
matnx; this can be illustrated by considering four
D=BS+I1I—-S size intervals as an example, as follows,
w; (1)1 5,;,0 0 O 5,00 0 ) {w,(0) 1 00 0 s, 0 0 O] ]r“'l(o)]
W2(1) _ bzl 6220 0 0 520 0 “’2(0) + t0 1 0 0 — 0 52 0 0 “‘2(0)
“’3(1) b31 b32 b330 0 0 330 \1?3(0) 0 0 1 O 0 0 53 0 “'3(0)
w,(1) J ba1 ba2bs3b,, LO 00 s, LW-s(O) L0 00 1_‘ LO 0 0 s . J MW (0) )

Austin (1971)

The Population Balance Model Is A Linear Matrix Model Based On Breakage

Probabilities Of Particles In Discrete Size Intervals
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Process Characteristics

| RX
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Morrell (2004)

It Is Possible To Fit Simple, Parameterized PBM Models To Empirical Data
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Our Proposed Approach

Physics-
Based

Models ’

Insights
Data

Simple Model-
Dynamics Based

’ Model Controller
Real System

Hybrid Data-Driven / Model-Based Approach Utilizing Physics-Based Simulation
Models Where Appropriate
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Questions, Comments, Ideas...

How best to utilize

. . p
simulation models: What model Applicable control
| form to use? methods?
Physics-
Based '
Non-linear
Models ’ . dynamics?
Insights || ALl HIERIE
Techniques for Data Slilylie: EESEE

Model Controller

system Constraints?
identification? Real System
Data-driven ,
models? Can we infer the
' hidden state? Robustness?
How to explore How to deal with
state-space? sample efficiency? Model-free Adaptive control?
methods?
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Thank You

Bill Tubbs

UBC School of Mining Engineering
bill.tubbs@me.com
+1(778) 378 6539
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Background

Typical SAG and Ball Mill Circuit Pe0=0-154 mm

{1

Ball Mill #1

———————————————————————————

F80=66 mm

P80=0.167 mm

SAG Mill
\ __________________________

SAG Mill Is The First Stage Of The Grinding Process And Experiences The Most

o e e o o e e e e o e ey,

@]

Variability Due To Unobservable Changes In Ore Feed Properties
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Process Characteristics
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Morrell (2004)

Empirical Work From Pilot-Scale And Full-Scale Mills Provides Some Insights
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