Control Of SAG Mills And Its Challenges

Bill Tubbs

PhD Student, School of Mining, UBC

Supervisors: Sanja Miskovic, Bhushan Gopulani

August 29, 2019

My Background

Technical Support Engineer

Operations Management Consultant

Manager, Environmental Permitting & Regulation

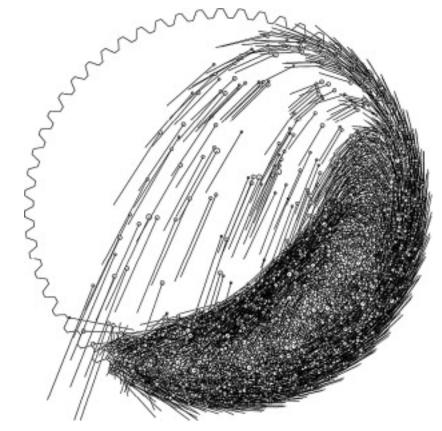
Manager, Climate & Energy

Energy Optimization Lead

Independent Consultant

SAG Mills Are Used In Large Mining Operations To Grind Crushed Ore Prior To Processing To Recover Valuable Metals

- Grinding occurs inside a rotating drum-shaped mill containing rocks, water, and steel balls
- Size of rock particles is reduced by two processes:
 - *Impact breakage* due to cataracting motion
 - Attrition due to cascading motion

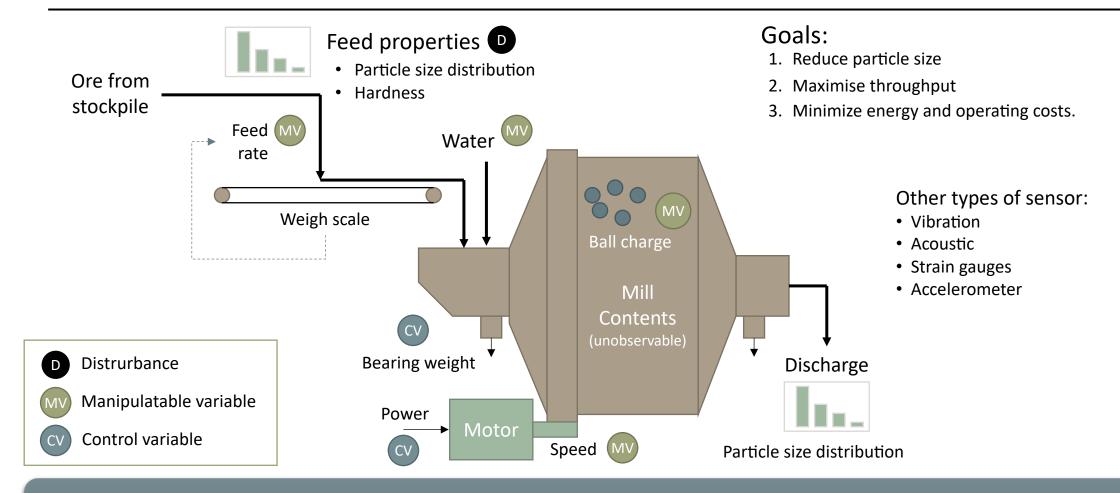


Source: https://www.sciencedirect.com/science/article/abs/pii/S0892687513002926

Video simulation: https://vimeo.com/266660541

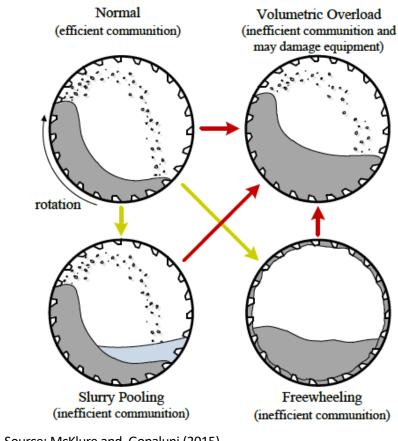
SAG Mills Are Used In Large Mining Operations To Grind Crushed Ore Prior To

Processing To Recover Valuable Metals



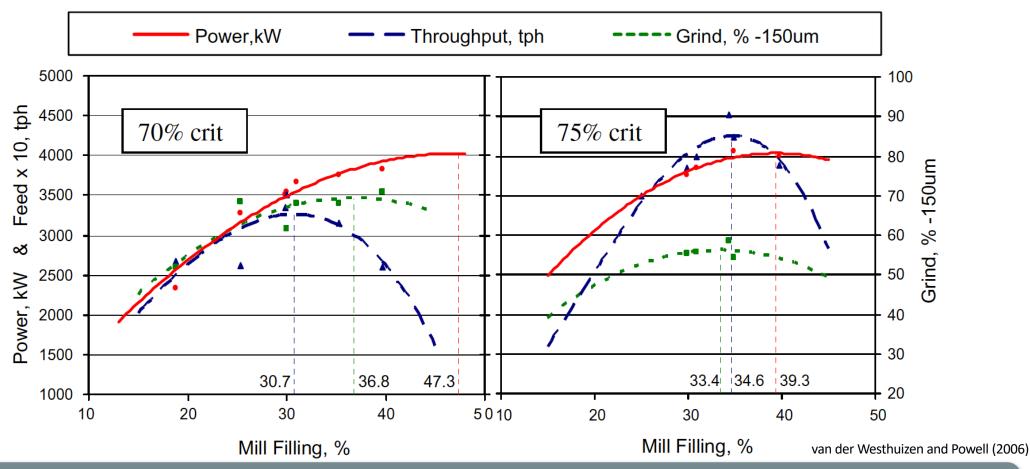
Multi-Input, Multi-Output (MIMO) System With Unobservable Internal State

- Control challenges
 - Strong, unobservable disturbances
 - Partially-observable state
 - Non-linear dynamics
 - Circulating load
 - Slow response
 - Noise, measurement error
 - Unstable states
 - Stochastic (rock breakage)
 - Non-stationary (liner and ball wear)
- Probably impossible to build precise model from first principles



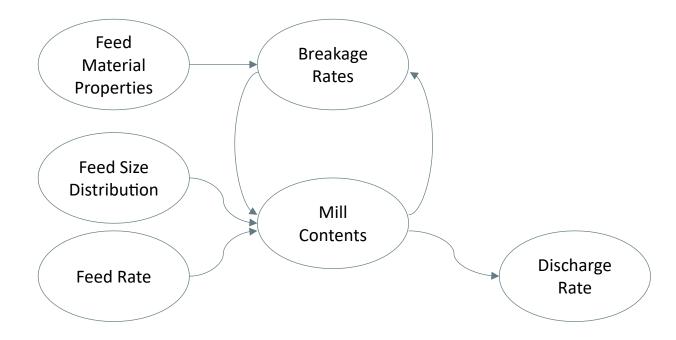
Source: McKlure and Gopaluni (2015)

Complex Process With Unstable, Non-Linear Dynamics



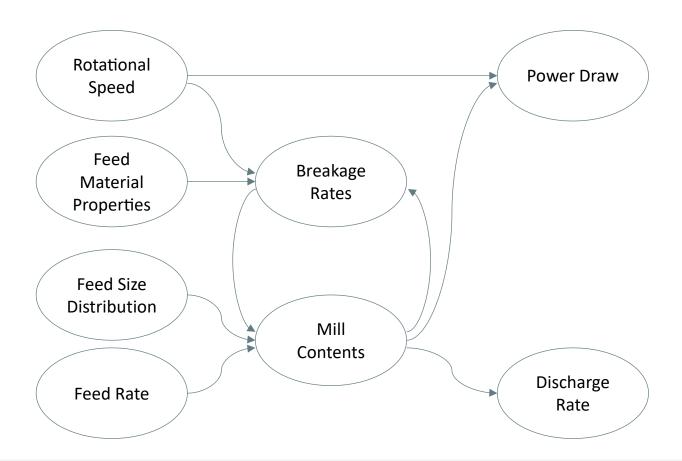
Mill Filling And Speed Have A Significant Effect On Grind, Throughput And Power Consumption

System Dynamics



Interactive Effects Between Mill Contents And Breakage Rates

System Dynamics



Interactive Effects Between Mill Contents And Breakage Rates

Process Simulation Models

Power Models

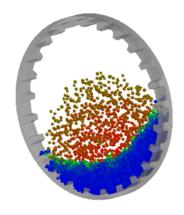
Population
Balance
Models (PBM)

Discrete
Element
Models (DEM)

Bond Work Index (kWh/t)

P = f(dimensions, ore, speed, ball size, rock size)

$$\frac{df_i}{dt} = -S_i f_i + \sum_{j=i-1}^{1} b_{ij} S_j f_j$$



Process Simulation Models Have Evolved From Simple Specific Energy Models To Very Sophisticated DEM Models

Process Simulation Models

Population Balance Model (PBM)

$$p = Df$$

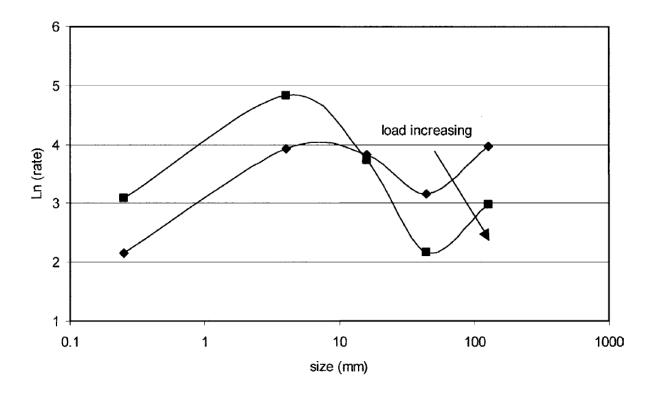
where
 $D = BS + I - S$

p is the product vector, f the feed vector, B the breakage matrix, I the unit matrix, S the selection matrix; this can be illustrated by considering four size intervals as an example, as follows,

$$\begin{pmatrix} w_{i}(1) \\ w_{2}(1) \\ w_{3}(1) \\ w_{4}(1) \end{pmatrix} = \begin{pmatrix} b_{11} & 0 & 0 & 0 \\ b_{21} & b_{22} & 0 & 0 \\ b_{31} & b_{32} & b_{33} & 0 \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix} \begin{pmatrix} s_{1} & 0 & 0 & 0 \\ 0 & s_{2} & 0 & 0 \\ 0 & 0 & s_{4} \end{pmatrix} \begin{pmatrix} w_{1}(0) \\ w_{2}(0) \\ w_{3}(0) \\ w_{4}(0) \end{pmatrix} + \begin{cases} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} s_{1} & 0 & 0 & 0 \\ 0 & s_{2} & 0 & 0 \\ 0 & 0 & s_{3} & 0 \\ 0 & 0 & 0 & s_{4} \end{pmatrix} \begin{pmatrix} w_{1}(0) \\ w_{2}(0) \\ w_{3}(0) \\ w_{4}(0) \end{pmatrix} + \begin{cases} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} s_{1} & 0 & 0 & 0 \\ 0 & s_{2} & 0 & 0 \\ 0 & 0 & s_{3} & 0 \\ 0 & 0 & 0 & s_{4} \end{pmatrix} \begin{pmatrix} w_{1}(0) \\ w_{2}(0) \\ w_{3}(0) \end{pmatrix}$$

Austin (1971)

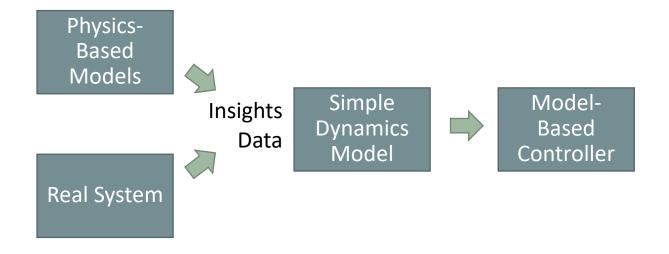
The Population Balance Model Is A Linear Matrix Model Based On Breakage Probabilities Of Particles In Discrete Size Intervals



Morrell (2004)

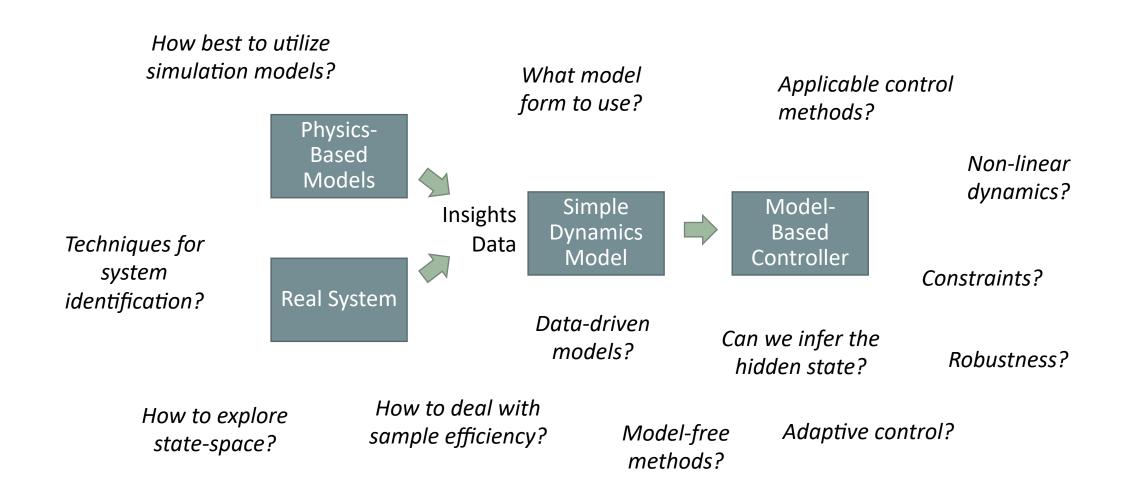
It Is Possible To Fit Simple, Parameterized PBM Models To Empirical Data

Our Proposed Approach



Hybrid Data-Driven / Model-Based Approach Utilizing Physics-Based Simulation Models Where Appropriate

Questions, Comments, Ideas...



Thank You

Bill Tubbs

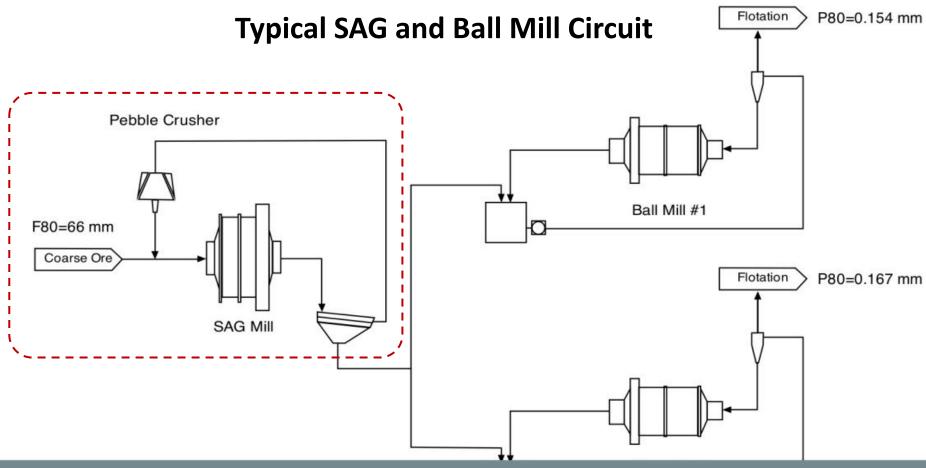
UBC School of Mining Engineering

bill.tubbs@me.com

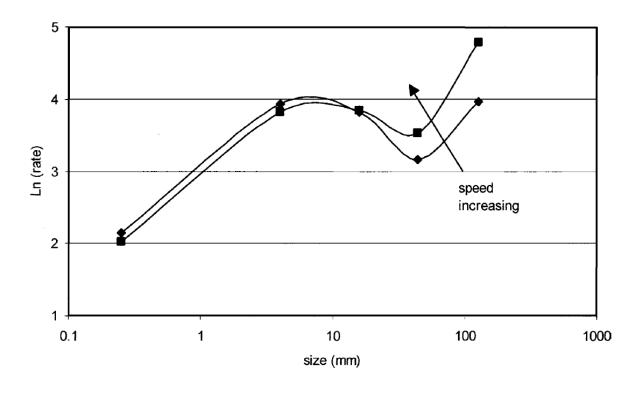
+1 (778) 378 6539

References

- Austin, L. G. (1971). Introduction to the Mathematical Description of Grinding as a Rate Process.
 Powder Technology.
- McClure, K. S., & Gopaluni, R. B. (2015). Overload detection in semi-autogenous grinding: A nonlinear process monitoring approach. IFAC-PapersOnLine, 28(8), 960–965.
 https://doi.org/10.1016/j.ifacol.2015.09.094
- Morrell, S. (2004). A new autogenous and semi-autogenous mill model for scale-up, design and optimisation. Minerals Engineering, 17(3), 437–445.
 https://doi.org/10.1016/j.mineng.2003.10.013
- Powell, M. S., van der Westhuizen, A. P., & Mainza, A. N. (2009). Applying grindcurves to mill operation and optimisation. Minerals Engineering, 22(7–8), 625–632. https://doi.org/10.1016/j.mineng.2009.01.008



SAG Mill Is The First Stage Of The Grinding Process And Experiences The Most Variability Due To Unobservable Changes In Ore Feed Properties



Morrell (2004)

Empirical Work From Pilot-Scale And Full-Scale Mills Provides Some Insights

Good / Relevant Books?

- Multivariable Feedback Control Analysis and Design Skogestad & Postlethwaite (2001)
- Practical Grey-box Process Identification Bohlin (2006)
- Adaptive Control: 2nd Edition Åström & Wittenmar (2008)
- Optimization-Based Control Murray (2009)
- Advanced Control and Supervision of Mineral Processing Plants Sbárbaro & del Villar (2010)
- Feedback Systems Åström & Murray (2011)
- Approximate Dynamic Programming: Solving the Curses of Dimensionality Powell (2011)
- Adaptive Control: Algorithms, Analysis and **Applications** Landau, Lozano, M'Saad & Karimi (2011)
- **Dynamic Optimization** Poulsen (2012)

- Dynamic Programming and Optimal Control Vols I & II Bertsekas (2017, 2012)
- Predictive Control for Linear and Hybrid Systems Borrelli, Bemporad, & Lucca (2018)
- Reinforcement Learning for Optimal Feedback Control

Kamalapurkar, Walters, Rosenfeld, & Dixon (2018)

- Linear Stochastic Systems Peter Caines (2018)
- Reinforcement Learning And Optimal Control Bertsekas (2019)
- Data-Driven Science and Engineering Brunton & Kutz (2019)
- Neural Approximations for Optimal Control and Decision

Zoppoli, Sanguineti, Gnecco, & Parisini (2020)

Intelligent Optimal Adaptive Control for Mechatronic Systems Szuster & Hendzel (2020)