Energy Management In Large Industrial Operations

Bill Tubbs

B. Tubbs & Associates Consulting Inc.November 22, 2016Saskatoon, SK

Objectives

- What is energy management?
- Overview of the tools and best practices
- The potential benefits
- How relevant is energy to your business?
- How to identify your needs
- SaskPower IEOP program offerings

My Background

Technical Support Engineer

Operations Management Implementation Consultant

Climate Change & Energy Efficiency Specialist

Manager, Environmental Permitting & Regulation

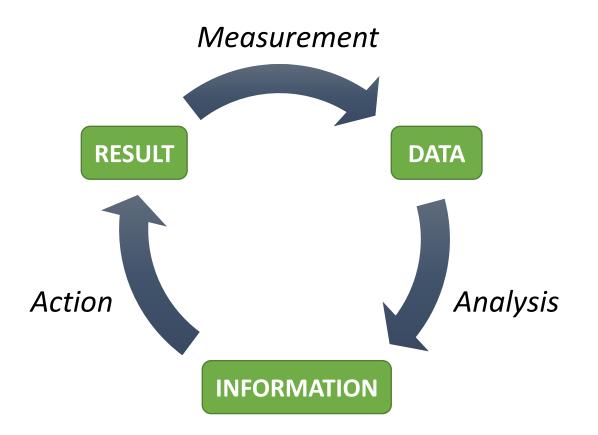
Senior Manager, Energy & Climate

Independent Consultant

The Integration Of Energy Efficiency Into Operations Performance Management Systems and Practices

Goal:

A Systematic Approach To Controlling, Optimizing and Continually Improving Energy Performance

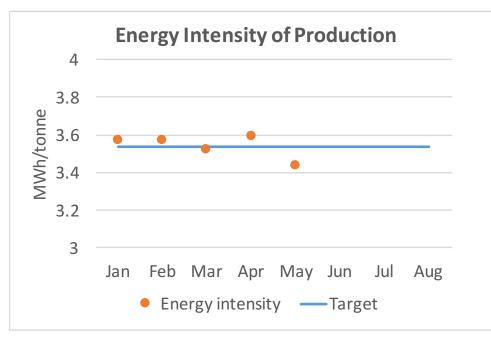

The Integration Of Energy Efficiency Into Operations Performance Management Systems and Practices

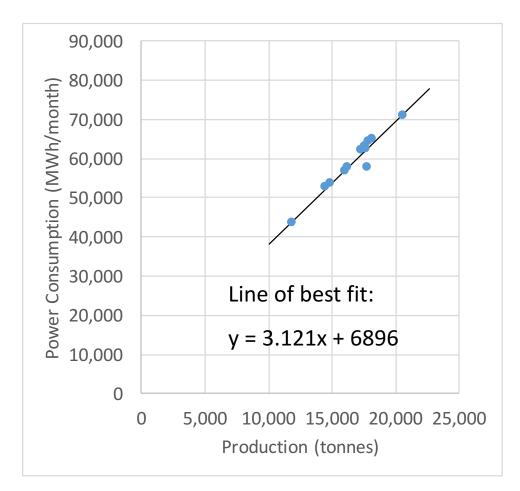
Typical activities:

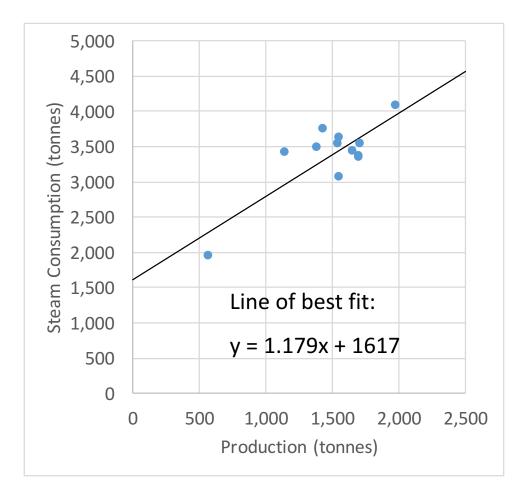
- Measurement
- Data analysis
- Reporting
- Defining roles and responsibilities
- Taking action

- Identification of project opportunities
- Policy and planning
- Investment decisionmaking
- Verification of savings

Key Concept: Performance Management


Key Issue: Energy Is Not Visible


Safety What does an *accident* look like?
Environment What does a *spill* look like?
Quality What does a *defect* look like?
Energy What does an *energy loss* or *inefficiency* look like?


Goal: Raise awareness of consumption and costs

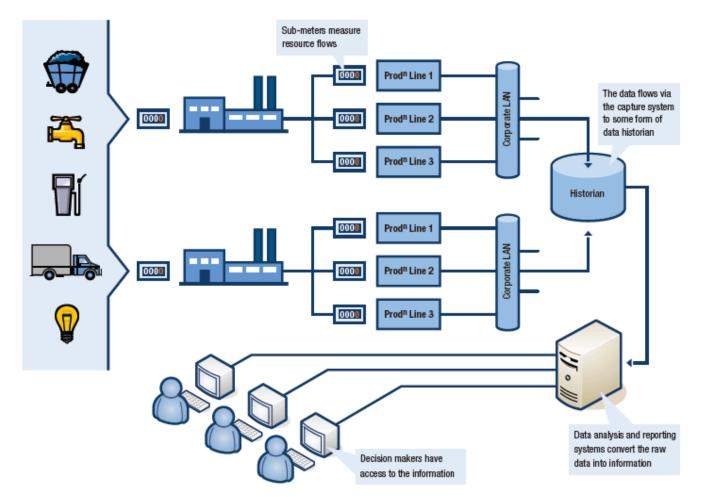
- 1. Start with available data
 - E.g. Utility bills monthly total consumption
- 2. Produce a simple performance indicator
 - E.g. \$/tonne
- 3. Review in your monthly management team meeting

	Jan	Feb	Mar	Apr	May	Jun	Jul	
Power consumption (MWh)	62,922	64,937	62,482	64,209	70,920			
Production (tonnes)	17,632	18,206	17,744	17,884	20,634			
Energy intensity (MWh/tonne)	3.57	3.57	3.52	3.59	3.44			

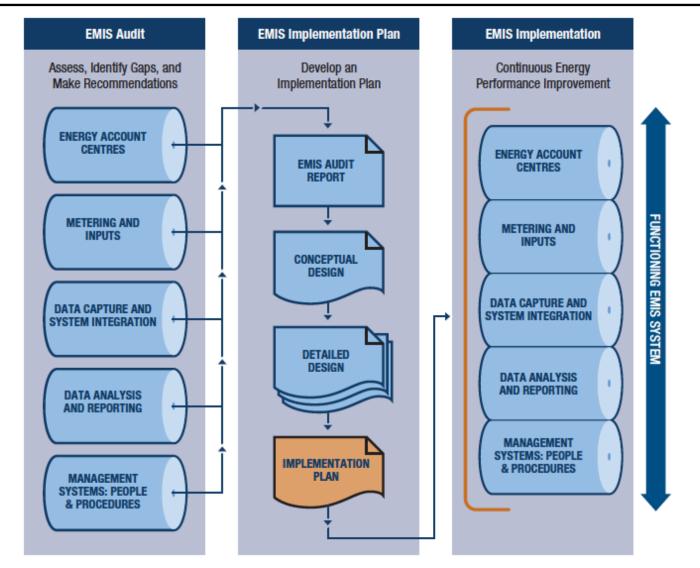
Energy Management - Comprehensive

Goal: Get the right information to the right people at the right time to manage energy performance

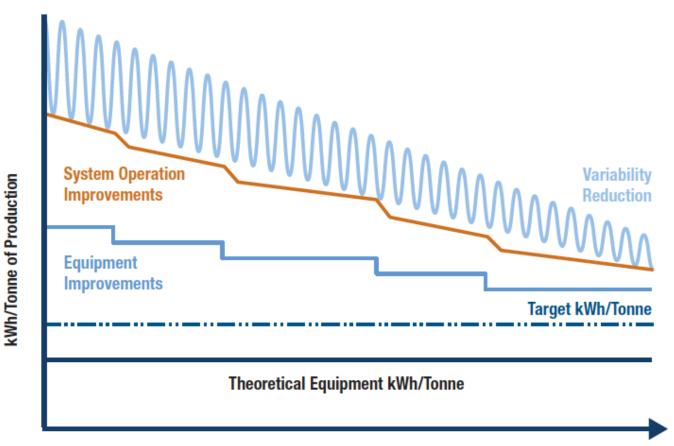
Energy Management - Comprehensive


Goal: Get the right information to the right people at the right time to manage energy performance

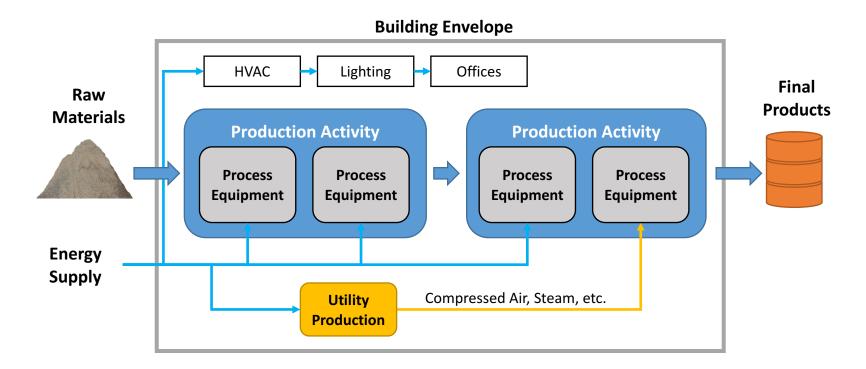
Key Concept:


• Energy Management Information System (EMIS)

An EMIS provides relevant information that makes energy performance visible so that key individuals and departments can take timely, effective action to control and reduce energy costs.


Energy Management - Comprehensive

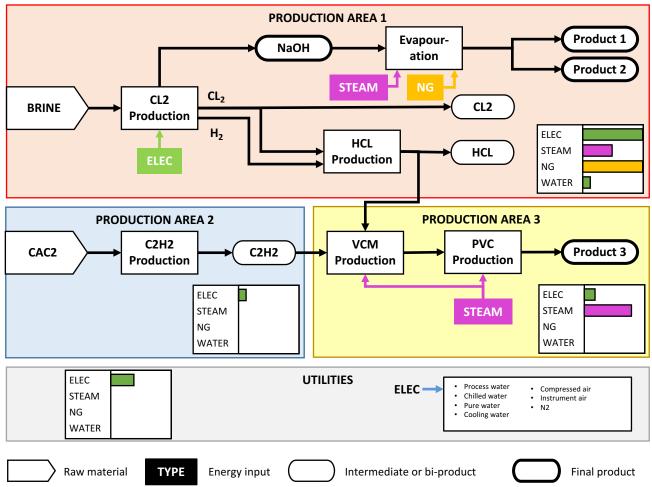
How To Identify Your Needs



Energy Management - Comprehensive

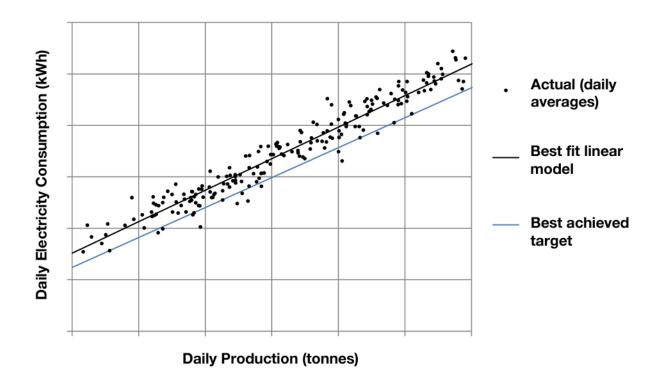
How To Identify Your Needs

Energy Use In Your Operation


Energy Management - Advanced

Goal: Integrate energy efficiency into operations performance management systems and practices

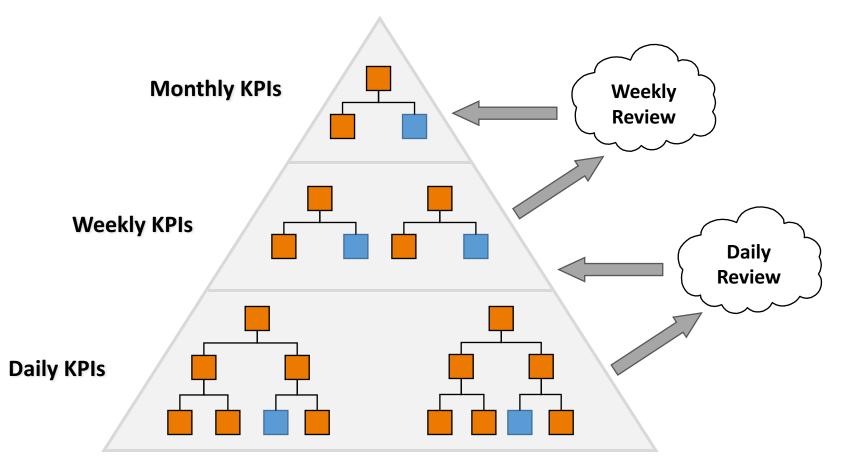
Key Concepts:


- Energy end-use breakdown by process area
- Energy performance analysis
- Short interval controls (SICs)
- 3-2-1 reporting
- Management, control and reporting system
- Continuous improvement process

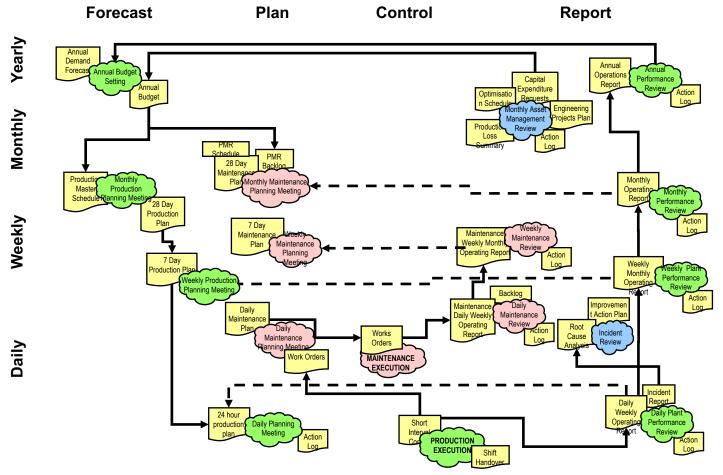
Energy Management - Advanced

Energy Management - Advanced

Energy Performance Analysis


Energy Management - Advanced

Short Interval Control


	Produ	iction	Elect	ricity	Cumualtive		Energy Waste (kWh)	
	Target	Actual	Target	Actual	Energy Waste			
Time	(tonnes)	(tonnes)	(kWh)	(kWh)	(kWh)	Loss	Comments	
7:00	5.00	4.53	2,569	2,661	92	92		
7:50	5.00	5.01	2,753	2,777	116	24		
8:40	5.00	4.88	2,705	2,850	260	144		
9:30	5.00	0.50	1,026	1,020	254	-7		
10:20	5.00	4.87	2,698	2,772	327	73		
11:10		1.						
12:00		rator com rmance in				Energy	2 waste is recorded	
12:50	short	interval t ulated tai	to the			and operator investigates cause		
13:40	Calc		gel.					
	45	19.79	11,752	12,079		327		

Energy Management - Advanced

3-2-1 Reporting Structure

Energy Management - Advanced Operations Management, Control, and Reporting System

Energy Management - Advanced Weekly-Monthly Operating Report

	plant:															
area	indicator	uom		base	target	week	ending				Rolling	month				
				1998	1999	02/04	02/11	02/18	02/25	02/25	5 weeks	jan	feb	mar	apr	may
SHE	Hours since classified injury	No	actual	48000	142500		45600	47700	49800	51900		42300	50605			
	days since breach of IPC	No	actual	161	415	85	92	99	106	113		81	109	$ \rightarrow $	$ \longrightarrow $	
	personal monitoring above MEL	No	actual	10	0							0		$ \longrightarrow $		
	outstanding health checks	No	actual	3	0							0				
plant	HPE output	tes	S&OP plan	35013	17560	276	743	826	698	344	2887	3351	6496	10714	10368	55
operations		tes	actual	59604		269	339	449	268	200	1525	6446	1086			
	Beta Tri output	tes	S&OP plan	35366	23010	393	1058	1176	988	118	3733	2035	1496	5503	7101	7
		tes	actual	32173		376	684	616	425	0	2101	435	1725			
	Beta Tri to Per Tri	tes	S&OP plan	25305	17056	840	840	840	840	210	3570	3720	3360			
		tes	actual	19112		491	469	354	354	185	1853	3266	1182			
	VDC output	tes	S&OP plan	6933	4330	203	203	203	203	87	899	400	400	378	491	3
		tes	actual	5234		0	43	250	0	0	293	338	291			
	HPE Utilisation	%	actual	57	13.3	11	13	18	12	8	12	57.8	10.8			
	Beta Tri Utilisation	%	actual	33	23.2	17	36	33	22	0	22	5.2	22.7			
	VDC Utilisation	%	actual	24	19.8	0	10	60	60	0	26	18.2	17.3			
	HPE Potential Utilisation	%	actual	79	?	100	100	98	100	100	100	98.4	99.4			
	Beta Tri Potential Utilisation	%	actual	50		20	50	81	100	100	70	5.2	85.7			
	VDC Potential Utilisation	%	actual	69	?	100	90	92	100	100	96	99.4	97.4			
materials	HPE stock	tes	actual		250	657	534	520	520	646		626	520			
	Beta Tri stock	tes	actual		6000	3066	3091	3408	3485	3317		3251	3391			
	VDC stock	tes	actual		700	600	535	638	564	490		655	527			
costs	Beta Tri Variable Cost/te ytd	£	actual	167	107							136				
	HPE Variable Cost/te ytd	£	actual	153	106							83				
	VDC Variable Cost/te ytd	£	actual	284	152							284				
	Total Fixed Costs for VDC4	£k	actual	4938								262.5				
		£k	plan	5366	4908							305.4	335.4	305.4	305.4	47
people	sickness absence	%	actual	3.0	2.0											
	outstanding commitment time	hrs	plan													

Energy Management - Advanced

Continuous Improvement Process

1	Performance Analysis	 Analyse historic operating data Identify energy drivers and causes of variation Develop energy baselines and achievable targets 	
2	Energy Loss Accounting	 Record daily energy losses compared to target Investigate and record reasons Aggregate and report data on main loss causes 	
3	Root Cause Analysis	 Multi-functional teams to investigate causes Apply root cause analysis techniques Verify/test hypotheses 	
4	Opportunity Identification	 Apply structured problem-solving techniques Utilise expert knowledge Evaluate potential benefits and cost 	
5	Project Development	 Assess technical and economic feasibility Detailed design and cost estimate Develop investment-grade business case 	
6	Results Planning	 Evaluate project costs, benefits and risks Select best projects and develop results plan Quantify total budget, benefits and timeline 	
7	Target Setting	 Review historic performance data Review improvement opportunity Set challenging but achievable 'stretch' targets 	

Summary Of Energy Management Tools and Best Practices

Theme	Most Basic	Comprehensive	Advanced
Energy Account Centres	-	Yes	Yes
Metering	Utility meter	Sub-metering	Sub-metering
Data Capture & System Integration	By hand	Plant historian	Plant historian
Analysis & Reporting	Simple KPI (e.g. kWh/tonne)	Energy performance baselines	Energy performance analysis
Roles & Responsibilities	One person	Accountabilities by EAC + Energy Team	Operational accountabilities
Management Systems and Practices	 Monthly review Ad-hoc investigation 	Daily, weekly, monthly review vs targetsCUSUM	Integrated operations performance management system
Continuous Improvement	-	• Project list	 Opportunity identification Project development Targets and results plans

How Important Is Energy Efficiency?

How Important Is Energy Efficiency?

	Return on Net Assets (RONA)									
License to Operate			Overall Equipment Effectiveness (OEE)				able sts	Fixed Costs		
Safety	Health	Environment	Social License	Availability	Rate	Quality	Raw materials	Energy	Maintenance capital	Labour
			Mana	igement, control	l and rep	orting sys	stems			
Asset integrity management				Maintenance effectiveness	Process control & optimization				tenance ciency	
Process manag		Environmental management	Stakeholder engagement			Operator training				
Persona & sa		Enviror manaç	Stake engag			cess	Energy management	control	Labour productivity	

Barriers To Energy Efficiency

Internal Barriers

- Energy is less visible
- Cost of metering, data collection
- Lack of information, knowledge, expertise
- Uncertainty about the savings and benefits
- Management bandwidth
- Opportunity cost of people's time.

External Factors

• Energy prices

Assessing The Potential Benefits

Questions To Ask

(i) Size Of The Opportunity

- How much is your annual energy spend?
- How complex is the production process?
- Degree of process variability
- Organisational awareness
- Current knowledge and expertise
- Historic efforts

Assessing The Potential Benefits

Energy Intensity and Cost Estimates for Canadian Industry Sectors in 2005

Industry Sector	Average End	ergy Intensity	Average Energy Cost pe Unit Output (\$) ¹		
Coal mining	0.38	GJ/ton	3.4	\$/ton	
Mining (excluding coal)	0.68	GJ/ton	6.3	\$/ton	
Industrial Minerals	4.7	GJ/ton	28	\$/ton	
Iron and steel	11.1	GJ/ton	57	\$/ton	
Pulp & paper	21	GJ/ton	226	\$/ton	
Metal smelting	71	GJ/ton	882	\$/ton	
Crude oil production	4.7	GJ/m3	31	\$/m3	
Natural gas production	6.8	GJ/1000m3	37	\$/1000m3	
Petroleum refining	1.1	GJ/m3	88	\$/m3	
Chemicals	14	GJ/\$GDP	0.10	\$/\$GDP	
Other Manufacturing	6.0	GJ/\$GDP	0.05	\$/\$GDP	

Data source: Masters thesis, A Simulation Model For Canada-US Climate Policy Analysis, B Tubbs, 2008. Notes:

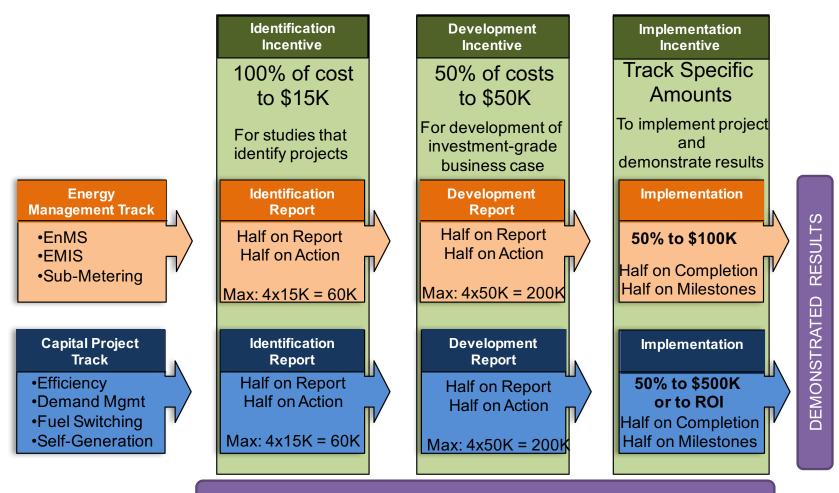
Includes all fuels and purchased energy sources. Costs are based on average provincial industrial energy prices.
 Costs were converted from 1995 Canadian dollars to 2015 dollars using the consumer price index for Canada.

Assessing The Potential Benefits

Questions To Ask

(ii) Importance To Business

- How important is reducing operating cost?
- What proportion of total operating cost is energy?
- Is sustainability an important goal?
- Are energy rates likely to increase?


(iii) Organisational Readiness

- How are you doing on other priorities (reliability, safety, ...)?
- Organisational capacity to manage competing priorities
- Management style
- Continuous improvement capability
- Senior management commitment.

How To Identify Your Needs

Identify Opportunity	Develop Solution	Im	plement
Opportunity analysis and business case for improvement	Customized detailed design, investment-grade business case, implementation plan	Systems and process improvements installed	Measurable sustainable results (continuous improvement)

SaskPower IEOP Program

Technical Assistance and Engineering Support

Thank You

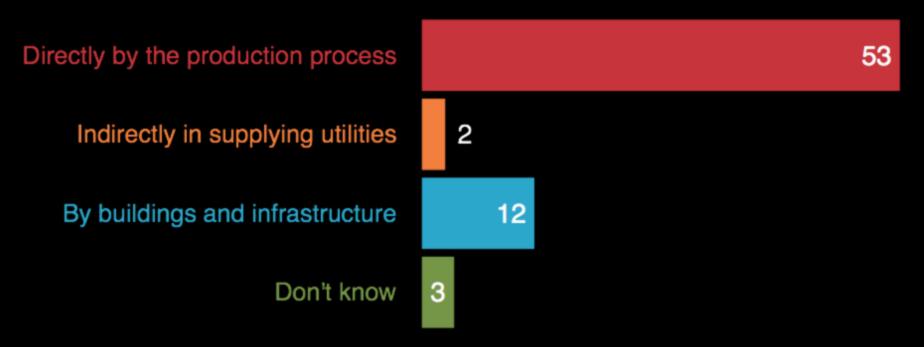
Bill Tubbs

B. Tubbs & Associates Consulting Inc.<u>bill.tubbs@me.com</u>+1 (778) 378 6539

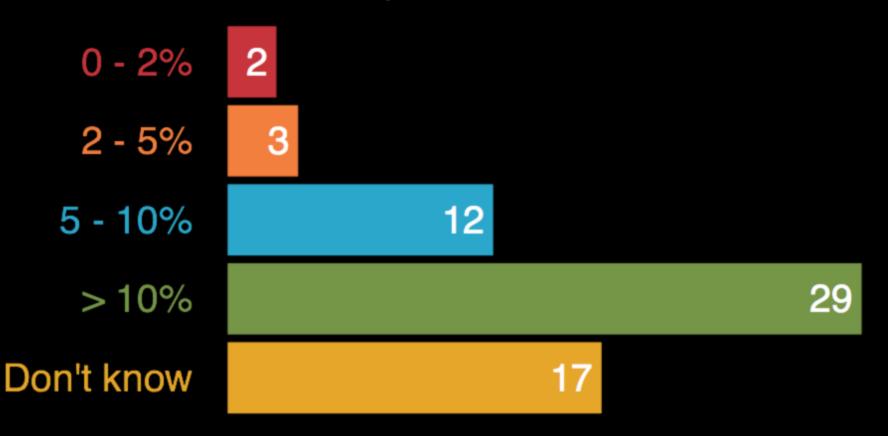
Audience Poll Results

Energy Management – Most Basic Level. Are you already doing these things at your site?

http://etc.ch/bsvG

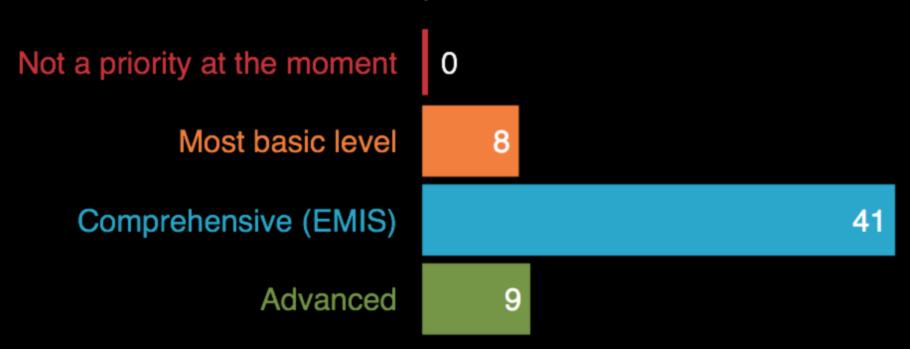


Where is most energy consumed in your operations?


http://etc.ch/bsvG

What is your site's energy cost as a proportion of total operating cost?

http://etc.ch/bsvG



63 votes - 63 participants

What type of energy management do you think is most appropriate to your operations?

http://etc.ch/bsvG

